A decoupled fluid structure approach for estimating wall stress in abdominal aortic aneurysms.
نویسندگان
چکیده
Abdominal aortic aneurysm (AAA) is a localized dilatation of the aortic wall. The lack of an accurate AAA rupture risk index remains an important problem in the clinical management of the disease. To accurately estimate AAA rupture risk, detailed information on patient-specific wall stress distribution and aortic wall tissue yield stress is required. A complete fluid structure interaction (FSI) study is currently impractical and thus of limited clinical value. On the other hand, isolated static structural stress analysis based on a uniform wall loading is a widely used approach for AAA rupture risk estimation that, however, neglects the flow-induced wall stress variation. The aim of this study was to assess the merit of a decoupled fluid structure analysis of AAA wall stress. Anatomically correct, patient specific AAA wall models were created by 3D reconstruction of computed tomography images. Flow simulations were carried out with inflow and outflow boundary conditions obtained from patient extracted data. Static structural stress analysis was performed applying both a uniform pressure wall loading and a flow induced non-uniform pressure distribution obtained during early systolic deceleration. For the structural analysis, a hyperelastic arterial wall model and an elastic intraluminal thrombus model were assumed. The results of this study demonstrate that although the isolated static structural stress analysis approach captures the gross features of the stress distribution it underestimates the magnitude of the peak wall stress by as much as 12.5% compared to the proposed decoupled fluid structure approach. Furthermore, the decoupled approach provides potentially useful information on the nature of the aneurysmal sac flow.
منابع مشابه
Image-based Computational Fluid Dynamics and Structural Analysis in Abdominal Aortic Aneurysms
Abdominal aortic aneurysm (AAA) is a localized dilatation of the aortic wall. The lack of an accurate AAA rupture risk index remains an important problem in the clinical management of the disease. To accurately estimate AAA rupture risk, detailed information on patient specific wall stress distribution and aortic wall tissue yield stress is required. A complete fluid structure interaction (FSI)...
متن کاملStress Analysis in Abdominal Aortic Aneurysms Applying Flow Induced Wall Pressure
Abdominal aortic aneurysm (AAA) is a localized dilatation of the aortic wall. The lack of an accurate AAA rupture risk index remains an important problem in the clinical management of the disease. To accurately estimate AAA rupture risk, detailed information on patient specific wall stress distribution and aortic wall tissue yield stress is required. A complete fluid structure interaction (FSI)...
متن کاملDrug Therapy for Small Abdominal Aortic Aneurysm
Dear Editor,Abdominal aortic aneurysm is often asymptomatic, less recognized, and causes considerable mortality and morbidity, if missed. The incidence varies from country to country and the occurrence is influenced by modifiable (smoking, coronary heart disease, hypertension, dyslipidemia, and prolonged steroid therapy) and non-modifiable risk factors (increasing age, male gender, and positive...
متن کاملStudy of Pulsatile Non-Newtonian Blood Flow Through Abdominal Aorta and Renal Arteries Incorporating Fluid- Structure Interaction
Background: The interaction between the blood and the vessel wall is of great clinical interest in studying cardiovascular diseases, the major causes of death in developed countries.Objective: To understand the effects of incorporating fluid-structure interaction into the simulation of blood flow through an anatomically realistic model of abdominal aorta and renal arteries reconstructed from CT...
متن کاملWall stress and flow dynamics in abdominal aortic aneurysms: finite element analysis vs. fluid-structure interaction.
Abdominal aortic aneurysm (AAA) rupture is the clinical manifestation of an induced force exceeding the resistance provided by the strength of the arterial wall. This force is most frequently assumed to be the product of a uniform luminal pressure acting along the diseased wall. However fluid dynamics is a known contributor to the pathogenesis of AAAs, and the dynamic interaction of blood flow ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of biomechanics
دوره 40 2 شماره
صفحات -
تاریخ انتشار 2007